Feed aggregator

Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.








Intel Moving Forward With 10nm, Will Switch Away From Silicon For 7nm

Slashdot - Tue, 24/02/2015 - 5:04am
An anonymous reader writes: Intel has begun talking about its plans for future CPU architectures. The company is already working on a 10nm manufacturing process, and expects the first such chips to be ready by early 2017. Beyond that, things are getting difficult. Intel says it will need to move away from silicon when it develops a 7nm process. "The most likely replacement for silicon is a III-V semiconductor such as indium gallium arsenide (InGaAs), though Intel hasn't provided any specific details yet." Even the current 14nm chips they're making ran into unexpected difficulties. "While Intel didn't provide any specifics, we strongly suspect that we're looking at the arrival of transistors based on III-V semiconductors. III-V semiconductors have higher electron mobility than silicon, which means that they can be fashioned into smaller and faster (as in higher switching speed) transistors."

Read more of this story at Slashdot.